If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w+6w^2=0
a = 6; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·6·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*6}=\frac{-20}{12} =-1+2/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*6}=\frac{0}{12} =0 $
| -3y-4=-8y+16 | | 4x^2-82x+414=0 | | −81=−1−8(x+2) | | -14-10x=8x+16 | | 1/4x+2=2/5x1 | | 18x^2-27x^2+13x-2=0 | | 5.1g+8=3.1g+14 | | 6×3x+8=120 | | 3.5x−20=2.4x+13 | | 5x(x+54)+90=180 | | 1/12t=-1 | | 5x-58=56+11x | | -16h+10h+6=-12 | | 6x=10+5x | | 12y-4=18-6y | | (x+8)=2x+3 | | 41/2x+1=10 | | 8x-2=12+7x | | 1/5x-2=-5 | | 10u+7=8(2u-4-9 | | =+−3w+12w6+7w30 | | 9x+16=-38 | | 14y-127=4 | | -2x3-x=-6-4 | | -6(x+2)=2 | | 7^(9x)=15 | | b=4+0.8b | | 3x+16=180/2 | | R(x)=6x-9 | | -1/x=-15 | | 0=1/10x-4 | | 5-2(x+50)=30 |